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Mathematical model of multiflute drill point
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Abstract

Multiflute drilling is an efficient means of making high accuracy holes without reaming. Because of the current lack of a compre-
hensive mathematical model for this kind of drilling, this paper presents a complete and simple method for designing multiflute
drills. There are three special features of the proposed model. The first is that rotational axial-type cutting tools and disk-type
abrasive wheels are modeled by revolution geometry, so that the normals and tangent vectors of flute and flank surfaces can be
obtained explicitly. Consequently, rake and clearance angles of cutting and chisel edges can be investigated according to rec-
ommended ISO standards. The second feature is that the mathematical models of flute and flank surfaces are integrated, so that
cutting and chisel edges and their various characteristic angles can be obtained by numerical calculation. Finally, a simple way to
determine the rake angles and wedge angles and clearance angles is presented by using the unit normals of the ISO-recommended
reference planes. To verify the validity of this methodology, a designed three-fluted drill was machined on a 6-axis tool-grinding
machine. This model is comprehensive, simple, easy to use, and capable of describing a wide range of drill design features.
2002 Published by Elsevier Science Ltd.
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1. Introduction

Drills are among the most common metal-working
tools. Nevertheless, they present one of the most com-
plex and least understood mechanisms of chip-removal.
Thus the design of drill flanks and flutes must be studied,
and better modeling tools must be provided, in order to
improve drill performance.

Helical flutes are usually machined from cylindrical
stock by grinding with disk-type abrasive wheels or mill-
ing with axial-type cutting tools. Due to the non-rectilin-
ear motion of the tool along the helical cutting path, the
geometry of the machined surface generated on the
workpiece is not related simply to the cross-sectional
profile of the cutting tool [1]. Recently, three different
approaches have been developed for relating the tool
profile to the helical profile. One of these methods con-
siders the tool as being composed of infinitely thin disks
stacked side by side, the disks being of different diam-
eters that correspond to the tool profile. The helical flute
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shape is developed as the envelope of the superposed
cutting paths of these disks. The second method is based
upon calculating the contact 3D space curve of the final
grinding operation [2]. The tool profile and the helical
groove profile are each mathematically related to the
contact curve. Kang et al. [3] developed a third model
by utilizing the principles of differential geometry and
kinematics to study the inverse and direct problems of
helical flute machining.

Another important geometry that affects the drill point
is the flank surfaces. Small variations in flank geometry
can have a very strong influence on drill performance.
The available drill point geometries in the literature are
planar [4], conical [5], spiral [6], cylindrical [7], multifa-
cet [8], split [9], and helical micro-drill [10]. For the
conventional twist drill, Galloway [5] developed a coni-
cal grinding principle. Fujii et al. [11,12] assumed that
the flute contour could be described in terms of para-
meteric equations and utilized computers to analyze drill
geometry. Fujii [13] also investigated the effects of chi-
sel edges on conical drill performance to obtain optimum
design. In 1979, Tsai and Wu [14] developed a quadratic
flank model, including conical, hyperboloidal, and elip-
soidal flanks, with applicability to the process of grind-
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Nomenclature

(xyz)� Coordinate frame (xyz)� built in drill;
(xyz)t Coordinate frame (xyz)t built in grinding wheel;
�At,i The configuration matrix of frame (xyz)t with respect to drill frame (xyz)� when the grinding wheel

generates the ith flute surface;
��t,i The configuration matrix of frame (xyz)t with respect to drill frame (xyz)� when a form grinding

wheel generates the ith flank surface;
tq � [x(h) 0 z(h) 1]T The generating curve of a revolution surface;
tr � Rot(z,n)tq The revolution surface;
tt � Rot(z,n)te The unit tangent vector of the grinding wheel;
tn � [nx ny nz 0]T The unit normal vector of the of the grinding wheel;
rflute,i � [rix riy riz 1]T The ith drill flute surface;
nflute,i � [nix niy niz 0]T The unit outward normal of the ith drill flute surface;
tflute,i � [tix tiy tiz 0]T The unit tangent vector of the ith drill flute surface;
Rflank,i � [Rix Riy Riz 1]T The ith drill flank surface;
Nflank,i � [Nix Niy Niz 0]T The unit outward normal of the ith drill flank surface;

Tflank,i � [Tix Tiy Tiz 0]T The unit tangent vector of the ith drill flank surface;
Redge,i � [Rix Riy Riz 1]T The ith cutting edge;
nedge at flute,i � [nix niy niz 0]T The unit normal of flute along the ith cutting edge;
Nedge at flank,i � [Nix Niy Niz 0]T The unit normal of flank along the ith cutting edge;
Tedge,i � [Tix Tiy Tiz 0]T The unit tangent vector of along the ith cutting edge;
R
�

chisel,i � [R
�

ix R
�

iy R
�

iz 1]T The ith chisel edge;
N
�chisel on flank,i The unit normal on the ith flank surface and along the chisel edge;
T
�chisel,i � [N

�ix N
�iy N

�iz 0]T The unit tangent vector along the ith chisel edge; �a The unit normal of plane Pa.

ing. There have also been investigations of drill wander-
ing motion [15] and drill geometry measurement [16].

From the above, it can be found that only two-fluted
drills have been modeled in the literature. However,
recent work by Ema et al. [17,18] and Agapiou [19,20]
has shown that multiflute drilling is an efficient means
of making holes with high accuracy and no reaming.
Moreover, the whirling vibrations which frequently
occur in ordinary two-fluted drills disappear when a
three-fluted drill is used, thereby eliminating rifling
marks on the hole surface [17,18]. Consequently, holes
with high roundness and straightness are obtained by
three-fluted drills. However, a comprehensive mathemat-
ical model for multiflute drills is missing. Therefore, this
paper introduces a step-by-step generalized mathemat-
ical model of a multiflute drill. Section 2 studies axial-
type cutting tools and disk-type abrasive tools in terms
of revolution geometry, and then establishes their unit
normals and tangent vectors. In Section 3, is determined
by conjugate surface theory the flute surfaces of a drill
with n flutes. Then, in Section 4, the design of flanks is
introduced by a general flank model having z � f(x) as
its generating curve. Sections 5 and 6 present the deter-
mination of cutting and chisel edges and their various
cutting angles. To investigate drill performance, numeri-
cal calculations of rake, wedge and clearance angles,
according to ISO standards, are presented in Section 7.
Conclusions are presented in Section 8.

In this paper, a position vector axi � ayj � azk is writ-
ten as a column matrix ja � [ax,ay,az,1]T. Here the pre-
superscript ‘ j’ of the leading symbol ja means this vector
is referred with respect to coordinate frame (xyz)j. Given
a point ja, its transformation ka is represented by the
matrix product ka � kAj

ja, where kAj is a 4 × 4 matrix
defining the position and orientation (referred to as con-
figuration hereafter) of a frame (xyz)j with respect to
another frame (xyz)k [21]. These notation rules are also
applicable to a unit directional vector jn � [nx,ny,nz,0]T.
If a vector is referred to the drill frame (xyz)o, then its
pre-superscript ‘0’ will be omitted for reasons of sim-
plicity.

2. Grinding tool model from surfaces of revolution

In this paper, the term tool (or tools) will be taken to
mean high rotational axial-type cutting tools or disk-type
abrasive wheels. One important feature of these tools is
that their working surfaces are surfaces of revolution.
Consequently, these working surfaces are studied in
terms of revolution geometry, and their unit normals and
tangent vectors are established. A tool surface tr can be
obtained by rotating its generating curve tq �
[x(h) 0 z(h) 1]T (x(h)�0 and parameter h varies over a
specified range) in xz plane about its symmetrical rotat-
ing zt axis (see Fig. 1). That is
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Fig. 1. The generating curve and its unit outward normal and unit
tangent vector.

tr � Rot(z,n)tq � [x(h)Cn x(h)Sn z(h) 1]T (1)

where Rot(z,n) is the rotation transformation matrix
about the z-axis given by (A1) in the Appendix. C and
S denote COSINE and SINE, respectively. Eq. (1) is a
generalized expression valid for parametrizing the work-
ing surfaces of disk and axial-type tools in terms of h
and the polar angular position n.

The derivative of a position vector tq to this space
curve, with respect to arc length s along the curve, is a
unit tangent vector to the curve pointing in the direction
of increasing arc length. We denote this unit tangent vec-
tor by tt,

tt � [tx ty tz 0]T �
d(tq)
ds

� �dx
ds

0
dz
ds

0 �T

� �dx
dh

dh
ds

0
dz
dh

dh
ds

0�T

(2)

� � x�(h)

�x�(h)2 � z�(h)2
0

z�(h)

�x�(h)2 � z�(h)2
0�T

Hereafter a prime is used to denote differentiation
with respect to the parameter h. Since tt is a unit vector,
the derivative d(tt) /ds � d2(tq) /d2s � rte (r is the
radius of curvature) is perpendicular to the tangent vec-
tor tt, and te is known as unit normal vector,

te � [ex ey ez 0]T �
1
r

d2(tq)
d2s

�
(tq × tq�) × tq�

|tq� × tq�||tq�|
(3)

� � �z�(h)

�x�(h)2 � z�(h)2
0

x�(h)

�x�(h)2 � z�(h)2
0�T

Note that the appropriate sign must be chosen so that
the outward normal can be obtained in this notation.

Consequently, the unit normal tn at the point tr along
the working surface is given by:

tn � [nx ny nz 0]T � Rot(z,n)te

� � �z�(h)Cn

�x�(h)2 � z�(h)2
(4)

�z�(h)Sn

�x�(h)2 � z�(h)2

x�(h)

�x�(h)2 � z�(h)2
0�

T

Note that according to geometrics, any vector obtained
by rotating tangent vector tt about its unit normal te at
an angle w(0�w � 2p) is also one of the unit tangent
vectors te at point tq in 3D space. This leads to:

te �

�
e2

x(1�Cw) � Cw eyex(1�Cw)�ezSw ezex(1�Cw) � eySw 0

exey(1�Cw) � ezSw e2
y(1�Cw) � Cw ezey(1�Cw)�exSw 0

exez(1�Cw)�eySw eyez(1�Cw) � exSw e2
z(1�Cw) � Cw 0

0 0 0 1
�

�
tx

ty

tz

0
� (5)

Further simplification of Eq. (5) is possible by utilizing
the equations teXtt � j and te.tt � extx � eztz � 0,
which results in:
te � [txCw Sw tzCw 0]T (6)

� � x�(h)Cw

�x�(h)2 � z�(h)2
Sw

z�(h)Cw

�x�(h)2 � z�(h)2
0�T

Consequently, in 3D space, any unit tangent vector tt at
the point tr on the revolution working surface can be
written as:

tt � Rot(z,n)te � �
tx

ty

tz

0
� (7)

� �
x�(h)CwCn

�x�(h)2 � z�(h)2
�SwSn

x�(h)CwSn

�x�(h)2 � z�(h)2
� SwCn

z�(h)Cw

�x�(h)2 � z�(h)2

0

�
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Table 1
Generating curves of grinding tool working surfaces

Working surface x(h) z(h)

Quadratic Conical h �mh
Elliptical h b�a2�h2

a

Hyperbolic h �b�h2�a2

a

Parabolic h �ah2

Ball end milling cutter rS(h /r) 0 � h � 0.5rpr 0.5p � h �rC(h /r) 0 � h � 0.5rph�0.5rp 0.5rp � h

a � 0 and b � 0

Eqs. (1), (3) and (7) give the parametric expression
of a working surface of arbitrary revolution shape, and
its unit normals and unit tangent vectors with respect to
the tool frame (xyz)t. Table 1 lists five generating curves
tq of four different quadratic form-grinding tools and one
axial-type tool. Once having these expressions, it is poss-
ible to determine the drill flute surfaces by conjugate
surface theory and the drill flank surfaces by coordi-
nate transformation.

3. Drill flute surfaces

In order to determine the flute surfaces of a drill with
n flutes in terms of the motions of disk or axial-type
tools (see Fig. 2) by using conjugate surface theory [22],
one needs to define a drill coordinate frame (xyz)o to
describe its position and orientation. The relative relation
of (xyz)t built in tool with respect to drill frame (xyz)o,
when the tool generates the ith flute surface, can be
obtained according to its generation motion, given as

�At’ i � Rot(x,180�)Trans(0,0,az)Rot

(z,qi � 	t � 360�(i�1) /n)Trans(ax,0,0)Rot(x,l)Rot(y,a) (8)

Fig. 2. Cutting the helical groove of a multiflute twist drill.

� �
CqiCa�SqiSlSa �SqiCl CqiSa � SqiSlCa axCqi

�SqiCa�CqiSlSa �CqiCl �SqiSa � CqiSlCa �axSqi

ClSa �Sl �ClCa �az

0 0 0 1
�

where Trans(ax,ay,az) is the transformation correspond-
ing to translation by a vector axi � ayj � azk, and
Rot(x,l) and Rot(y,a) are the rotation transformation
matrices about the x and y axes given by (A2–A4 in the
Appendix [21]. a and l define the required tool orien-
tation in order to generate the desired flute shape (see
Fig. 2). 360�(i�1) /n gives the initial angular position of
the tool in order to produce the ith flute. The tool rotates
with an angular velocity 	 and, at the same time,
advances along the z and x axes of drill frame (xyz)o

with position defined by az � k3	t � mt and ax �
axo � k1	t, respectively. Note that az � k3	t generates

a helical flute and az � mt generates a straight flute. Also
note that ax increases when the grinding tool advances
along the shank, so that the web gradually increases in
thickness towards the shank to give the drill strength (see
Fig. 3). The flute surface is generated according to the
conjugate surface theory. This theory states that these
two surfaces have common point and common normal
vector at the conjugate points. Based on this, conjugate
points and the complete flute-profile can be determ-
ined from:

nT
i

d(ri)
dt

� (�At’ i
tn)T

d(�At’ i
tr)

dt
� 0 (9)

where ri and ni are, respectively, surface equation and
unit outward normal with respect to frame (xyz)o

obtained from the coordinate transformations by ri �
�At’ i

tri and ni � �At’ i
tn. Eq. (9) states that for continuous

contact to be maintained between two moving surfaces,
the relative sliding velocity d(ri) /dt must be orthogonal
to the common normal ni at the conjugate point. If this
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Fig. 3. A three fluted twist drill.

condition is not satisfied, then either the contact between
the surfaces breaks or gouging occurs. If Eq. (9) is
imposed on Eqs. (1) and (4), one can find the relation
of the parameters h and n (denoted as h̄ and 
̄,
respectively) at the conjugate point expressed as

{�[x(h̄)x�(h̄) � z(h̄)z�(h̄)]	Sl�z�(h̄)	(axSlSa

� k1Ca�k3ClSa) � mz�(h̄)ClSa�Cn̄

�{[x(h̄)x�(h̄) � z(h̄)z(h̄)]	ClSa (10)

� z�(h̄)	(axCl � k3Sl) � mz�(h̄)Sl�Sn̄

�x�(h̄)	(axSlCa�k1Sa�k3ClCa)

� mx�(h̄)ClCa � 0

For a particular value of h̄, which represents a point
tq on the generating curve, a value of 
̄ can be found
from the above equation. Now the ith flute surface
rflute,i generated by the tool can be obtained by substitut-
ing Eq. (10) into Eq. (1), and then transforming to frame
(xyz)o by rflute,i � �At’ i

tr

rflute ,i
� [rix riy riz 1]T � (11)

�
x(h̄)(CqiCa�SqiSlSa)Cn̄�x(h̄)SqiClSn̄ � z(h̄)(CqiSa � SqiSlCa) � (axo � k1	t)Cqi

�x(h̄)(SqiCa � CqiSlSa)Cn̄�x(h̄)CqiClSn̄ � z(h̄)(�SqiSa � CqiSlCa)�(axo � k1	t)Sqi

x(h̄)ClSaCn̄�x(h̄)SlSn̄�z(h̄)ClCa�k3	t�mt

1
�

The cross-sectional shape of the drill as intersected by
a transverse plane normal to the drill axis at a particular
zt coordinate (say, �zt), can be obtained by solving for
t and 
̄ for a given h̄ from the two nonlinear equations,
riz � � zt and Eq. (10). The valid range of n̄, p /2 �
ν̄min�n̄�n̄max � 3p /2), (see Fig. 2) can be also obtained
from r2

ix � r2
iy � R2 (R is the radius of drill blank) during

this iteration calculations.
The unit outward normal nflute,i and unit tangent vec-

tor tflute,i of the ith drill flute surface, which are two
important parameters for determining the drill angles, are
respectively given by

nflute,i � �At’ i
tn � [nix niy niz 0]T �

1

�x’ (h̄)2 � z’ (h̄)2
(12)

�
�z’ (h̄)Cn̄(CqiCa�SqiSlSa) � z’ (h̄)Sn̄SqiCl � x’ (h̄)(CqiSa � SqiSlCa)

z’ (h̄)Cn̄(SqiCa � CqiSlSa) � z’ (h̄)Sn̄CqiCl � x’ (h̄)(�SqiSa � CqiSlCa)

�z’ (h̄)Cn̄ClSa � z’ (h̄)Sn̄Sl�x’ (h̄)ClCa

0
�

tflute,i � �At’ i
tt � [tix tiy tiz 0]T �

Cw

�x’ (h̄)2 � z’ (h̄)2

�
x’ (h̄)Cn̄(CqiCa�SqiSlSa)�x’ (h̄)Sn̄SqiCl � z’ (h̄)(CqiSa � SqiSlCa)

−x’ (h̄)Cn̄(SqiCa � CqiSlSa)�x’ (h̄)Sn̄CqiCl � z’ (h̄)(�SqiSa � CqiSlCa)

x’ (h̄)Cn̄ClSa�x’ (h̄)Sn̄Sl�z’ (h̄)ClCa

0
�(13)
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� Sw�
�Sn̄(CqiCa�SqiSlSa)�Cn̄SqiCl

Sn̄(SqiCa � CqiSlSa)�Cn̄CqiCl

�Sn̄ClSa�Cn̄Sl

0
�

Since 
̄ and h̄ are related through Eq. (10), we can say
that the ith flute surface rflute,i, unit outward normal
nflute,i,, and unit tangent vector tflute,i can be expressed
solely in terms of h̄ and qi for a given tool and
ax,az,l,a. Fig. 4 gives the transverse section of a three-
fluted drill at riz � �10 (all length units used hereafter
are mm) produced by a disk-type grinding tool having
the following generating curve

�x(h) � 40 0�h�40

x(h) � 40 � 3.5S(
h�40

3.5
) 40 � h � 40 � 3.5p

x(h) � 80 � 3.5p�h 40 � 3.5p�h�80 � 3.5p

(14)

�z(h) � 3.5 0�h�40

z(h) � 3.5C(
h�40

3.5
) 40 � h � 40 � 3.5p

z(h) � �3.5 40 � 3.5p�h�80 � 3.5p

Fig. 4. The transverse section of a three-fluted drill at riz=10 mm.

The employed parameters are a � 10�, l � 38�, R �
15, axo � 45.5, k1 � 0.286, k3 � 19.098, m � 0.

From numerical calculations, the ranges of 
̄ and h̄ on
the transverse plane normal at riz � �10 are respectively
given by 154.43��n̄�193.00�,41.89�h̄�50.44.

4. Tool flank surfaces

The following will discuss a drill shape with various
flank surfaces as produced by various grinding tools. In
order to obtain an expression for a drill flank as produced
by a given grinding tool, the generating curve of the
form-grinding tool should first be defined as tq �
[hi 0 f(hi) 1]T. The grinding tool’s working surface, unit

outward normal and unit tangent vector are then obtained
respectively from Eqs. (1), (4) and (7) as

tr � [hiCni hiSni f(h)i 1]T (15)

tn � � �f’ (hi)Cni

�1 � f’ (hi)2

�f’ (hi)Sni

�1 � f’ (hi)2

1

�1 � f’ (hi)2
0�T

(16)

tt � � CwiCni

�1 � f’ (hi)2
�SwiSni

CwiSni

�1 � f’ (hi)2
� SwiCni

f’ (hi)Cwi

�1 � f’ (hi)2
0�T

(17)

Note that the tool profile described in Eq. (17) is not the
tool used in machining the drill flutes. Also note that
when grinding the drill flanks using form-grinding tools,

Fig. 5. Grinding of drill flank surfaces by using form-grinding tool.
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the drill flank axiomatically must lie along the working
surface of the tool (see Fig. 5) by the following move-
ment procedure.

It is well known that three independent rotation angles
and three independent translation components are
needed in 3D space to completely specify the orientation
and position of a rigid body. Note that the working sur-
face of the grinding tool is surface of revolution. There-
fore, only two positive angles (y and b) are required to
describe the rotational orientation of the drill relative to
the form-grinding tool, while three positive translations
(g, l, and w) are required to shift the drill’s origin. Note
that these n drill flanks are symmetrical with respect to
the drill axis. Consequently, one can rotate the drill an
extra angle 360°(i�1) /n about drill’s axis to machine
the ith flank surface. Consequently, in order to generate
the ith flank surface the relative configuration of the
drill’s frame with respect to the tool’s frame can be
obtained by the following movement

t�o’ i � Trans(0,0,�l)Rot(y,
)Trans(0,0,w)

Trans(0,�g,0)Rot(z,bi � b � 360�(i�1) /n)

� �
C
Cbi �C
Sbi S
 wS


Sbi Cbi 0 �g

�S
Cbi S
Sbi C
 wC
�l

0 0 0 1
� (18)

The value of b is usually determined by setting the cut-
ting edges as nearly straight for a given flute shape. One
must note that when flank surfaces are produced, in order
to keep the dead center at the origin of frame (xyz)o, the
origin of frame (xyz)o must be on the working surface
of the form-grinding tool. In other words, the fourth col-
umn of Eq. (18) should be coincides with one point
(denoted as [hdCnd hdSnd f(hd) 1]T) of the working sur-
faces. As a result, there are two constraints between
these five parameters

Tan(nd) �
�g

wS

(19)

l � wC
�f(�w2S2
 � g2) (20)

Eq. (19) states that coordinates of �g and wS
 have to
be one point of the generating curve defined by angle
nd. Finally, the ith flank surface in the drill frame
(xyz)o can be obtained by transforming the grinding tool
working surface, Eq. (15), to frame (xyz)o by Rflank,i �
��t’ i

tr, where ��t’ i is the relative configuration of the
form-grinding tool frame (xyz)t with respect to drill
frame (xyz)o given by (see Eq. (18))

��t’ i � (t�o’ i)�1 � Rot(z,�bi) Trans(0,g,0)

Trans(0,0,�w)Rot (y,�
)Trans(0,0,l) (21)

� �
C
Cbi Sbi �S
Cbi �lCbiS
 � gSbi

�C
Sbi Cbi S
Sbi lSbiS
 � gCbi

S
 0 C
 lC
�w

0 0 0 1
�

Rflank,i � ��t,i
tr � �

Rix

Riy

Riz

1
� (22)

� �
hi[CbiC
Cni � SbiSni]�[f(hi) � l]CbiS
 � gSbi

hi[�SbiC
Cni � CbiSni] � [f(hi) � l]SbiS
 � gCbi

hiS
Cni � [f(hi) � l]C
�w

1
�

As can be seen from Eq. (22), the geometry of the ith
drill flank surface varies continuously as function of

, hi, g, w and l. Hence, the rotational orientation and
translations of the drill are important factors determining
the drill characteristics.

The unit outward normal Nflank,i and unit tangent vec-
tor Tflank,i of the flanks are two important vectors
determining drill point angle, clearance angle and chisel
edge angle. They are respectively given by transforming
Eqs. (16) and (17) to frame (xyz)o as

Nflank,i � ��t’ i
tn

� �
Nix

Niy

Niz

0
� �

1

�1 � f’ (hi)2
(23)

�
�f’ (hi)[CbiC
Cni � SbiSni]�CbiS


�f’ (hi)[ � SbiC
Cni � CbiSni] � SbiS


�f’ (hi)S
Cni � C


0
�

Tflank,i � ��t,i
tt � [Tix Tiy Tiz 0]T (24)

�
Cwi

�1 � f’ (hi)2�
CbiC
Cni � SbiSni�f’ (hi)CbiS


�SbiC
Cni � CbiSni � f’ (hi)SbiS


S
Cni � f’ (hi)C


0
�

� Swi�
�CbiC
Sni � SbiCni

SbiC
Sni � CbiCni

�S
Sni

0
�
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Once having the expressions of flute and flank surfaces,
and also their unit outward normals and unit tangent vec-
tors, it is possible to investigate various characteristic
angles of drill, as is done in the following sections.

5. Cutting edge and drill point angle

The ith cutting edge Redge,i is formed by the intersec-
tion of the ith flank surface Rflank,i and the ith flute sur-
face rflute,i . Numerical techniques are needed to deter-
mine or optimize these space curve edges by solving for
flank variables ni and hi, and flute variables 
̄ and qi for
a given h̄ (denoted as 
i,hi,
̄,qi and h̄ respectively) by
using conjugate Eq. (10) and setting Rflank,i � rflute,i.
Therefore, the ith cutting edge is obtained from Eq.
(22) as

Redge,i � �
Rix

Riy

Riz

1
� (25)

� �
hi(CbiC
Cni � SbiSni)�[f(hi) � l]CbiS
 � gSbi

hi( � SbiC
Cni � CbiSni) � [f(hi) � l]SbiS
 � gCbi

hiS
Cni � [f(hi) � l]C
�w

1
�

Fig. 6 shows the front end view of the major cutting
edges of a drill having the flute shapes shown in cross-
section in Fig. 4, while the generating curve of the form-
grinding tool is tq � [hi 0 �1.73hi 1]T and parameters
used are 
 � 29�, g � 8.205, w � 87.065, l �
150.627 and b � 38�

In order to determine the rake and clearance angles,
The normals along the cutting edges at both flute and
flank surfaces from Eqs. (12) and (23) are required:

nedge at flute,i � [nix niy niz o]T �
1

�x’ (h̄)2 � z’ (h̄)2
(26)

�
�z’ (h̄)Cn̄(CqiCa�SqiSlSa) � z’ (h̄)Sn̄SqiCl � x’ (h̄)(CqiSa � SqiSlCa)

z’ (h̄)Cn̄(SqiCa � CqiSlSa) � z’ (h̄)Sn̄CqiCl � x’ (h̄)(�SqiSa � CqiSlCa)

�z’ (h̄)Cn̄ClSa � z’ (h̄)Sn̄Sl�x’ (h̄)ClCa

0

�
Nedge at flank,i � �

Nix

Niy

Niz

0
� �

1

�1 � f’ (hi)2
(27)

Fig. 6. The front view of the major cutting edges of a three-fluted
drill.

�
�f’ (hi)[CbiC
Cνi � SbiSνi]�CbiS


�f’ (hi)[�SbiC
Cνi � CbiSνi] � SbiS


�f’ (hi)S
Cνi � C


0
�

Furthermore, one can obtain the common unit tangent
vector (denoted as Tedge,i) of Rflank,i and rflute,i along
Redge,i by determining wi and w (denoted as wi, and w
respectively) from Tflank,i � tflute,i. Therefore, one has the
following unit tangent vector along the ith cutting edge

Tedge,i � [Tix Tiy Tiz 0]T (28)

�
Cwi

�1 � f’ (hi)2�
CbiC
Cνi � SbiSνi�f’ (hi)CbiS


�SbiC
Cνi � CbiSνi � f’ (hi)SbiS


S
Cνi � f’ (hi)C


0
�

� Swi �
�CbiC
Sνi � SbiCνi

SbiC
Sνi � CbiCνi

�S
Sνi

0
�

The semi-included angle xedge,i of the cutting edges is
the angle between the tangent vector Tedge,i along the
curved cutting edge and the drill axis zo, and is given by
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Cxedge,i � [0 0 �1 0]Tedge,i � �Tiz (29)

�
�Cwi

�1 � f’ (hi)2
� SwiS
Sνi

which is usually different at different points. Lin et al.
[10] defined the semi-point angle as the acute angle
between the tangent to the projection of the cutting edge
at the outer corner and the drill axis zo on the xz plane
of frame (xyz)o. Therefore, the point angle of the case
shown in Fig. 6 is 2xedge,i � 116.1°, evaluated at the
outer corner.

6. Chisel edge and its angle

The chisel edge represents part of the intersection
curve of two sequential flank surfaces. Its calculation
again needs numerical techniques to determine the ith
chisel edge (denoted as Rchisel,i) by solving for variables
ni, ni � 1 and hi � 1 for a given hi (denoted as
n
�i, n�i � 1, h

�i � 1, and h
�i respectively) from

Rflank,i � Rflank,i � 1. Then the ith chisel edge Rchisel,i is
obtained from Eq. (21):

R
�chisel,i � �

R
�ix

R
�iy

R
�iz

1
� (30)

� �
h
�

i[CbiC
Cn
�

i � SbiSn
�

i]�[f(h
�

i) � l]CbiS
 � gSbi

h
�

i[�SbiC
Cn
�

i � CbiSn
�

i] � [f(h
�

i) � l]SbiS
 � gCbi

h
�

iS
Cn
�

i � [f(h
�

i) � l]C
�w

1
�

Again, in order to investigate the rake and clearance
angles of the chisel edges, one needs the normals on the
flank surfaces Rflank,i and Rflank,i � 1 along the chisel
edges from Eq. (23):

N
�chisel on flank,i � �

N
�ix

N
�iy

N
�iz

0
� �

1

�1 � f’ (h
�i)2

(31)

�
�f’ (h

�i)[CbiC
Cn
�i � SbiSn�i]�CbiS


�f’ (h
�i)[�SbiC
Cn

�i � CbiSn�i] � SbiS


�f’ (h
�i)S
Cn

�i � C


0
�

N
�chisel on flank,i+1 � [N

�i+1x N
�i+1y N

�i+1z 0]T

�
1

�1 � f’ (h
�i+1)2

(32)

�
�f’ (h

�i+1)[Cbi+1C
Cn
�i+1 � Sbi+1Sn�i+1]�Cbi+1S


�f’ (h
�i+1)[�Sbi+1C
Cn

�i+1 � Cbi+1Sn�i+1] � Sbi+1S


�f’ (h
�i+1)S
Cn

�i+1 � C


0
�

Furthermore, one can obtain the common unit tangent
vector (denoted as T

�
) along that ith chisel edge by

determining wi and wi � 1 (denoted as w
�i and w

�i � 1

respectively) from Ti � Ti � 1. The common unit tangent
vector along the ith chisel edge is

T
�chisel,i � [T

�ix T
�iy T

�iz 0]T �
Cw

�i

�1 � f’ (h
�i)2

�
[CbiC
Cn

�i � SbiSn�i]�f’ (h
�i)CbiS


[�SbiC
Cn
�i � CbiSn�i] � f’ (h

�i)SbiS


S
Cn
�i � f’ (h

�i)C


0
� (33)

� Sw
�i�

�CbiC
Sn
�i � SbiCn�i

SbiC
Sn
�i � CbiCn�i

�S
Sn
�i

0
�

The ith chisel edge angle hedge,i of a multiflute drill is
the acute angle between the tangent to the projection of
that chisel edge at the drill point center (n

�i � nd and
h
�i � hd, see Fig. 5) and xo axis onto a plane normal to
the drill axis [10]. Lin expressed hedge,i as

Chedge,i = T
�x

�
Cw

�i[CbiC
Cnd � SbiSnd]�f’ (hd)CbiS


�1 � f’ (hd)2
(34)

�Sw
�i[CbiC
Snd�SbiCnd]

For the first chisel edge angle of the drill in Fig. 6,
hedge,1 � 79.72�. The rake angle and clearance angle of
chisel edges according to ISO standards will be dis-
cussed in the following section.

7. Rake angle and clearance angle

The geometry and nomenclature of drills are surpris-
ingly complicated subjects. It is difficult to calculate or
even discuss the appropriate planes in which the various
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Fig. 7. Tool-in-hand planes for the major cutting edge.

angles of a drill should be measured because of con-
fusion among current definitions. The international stan-
dard (ISO) recommendation [23] established two sys-
tems of planes, tool-in-use and tool-in-hand, that can be
used to define the various angles of the face and flank
of a single-point tool (see Fig. 7). The tool-in-use system
is defined in relation to the resultant cutting direction.
The tool-in-hand system, on the other hand, is defined
in relation to the tool base and is used for the purposes
of grinding and sharpening the tool. In this paper, the
tool-in-hand system will be used here to define the
required planes, which are the tool reference plane Pr

(the plane perpendicular to the primary motion), the cut-
ting edge plane Ps (the plane tangential to the cutting
edge and perpendicular to the tool reference plane), and
the cutting edge normal plane Pn (the plane perpendicu-
lar to the cutting edge) (see Fig. 7). Table 2 shows how
the tool rake angle g, clearance angle �, and wedge
angle m � 90°�g�� are defined with respect to a selec-
ted point on the cutting edge by ISO.

In drilling, the primary motions of points along cutting
edge and chisel edge are respectively given by
k × Redge,i � �Riyi � Rixj and k × R

�chisel,i � �R
�iyi �

Table 2
Tool angle definitions from ISO

Angle Is the angle between And Measured in plane

Tool rake angle g Pface Pr Pn

Tool clearance angle � Pflank Ps Pn

Tool wedge angle m Pface Pflank Pn

a Pface: tool face plane
b Pflank: tool flank plane

R
�ixj where i, j and k are unit directions of drill frame
(xyz)o. Therefore, the unit normals of tool reference
planes at all points on cutting edge and on chisel edge
are given by ledge,i � (�Riyi � Rixj) /�R2

ix � R2
iy and

lchisel,i � (�R
�iyi � R

�ixj) /�R
�

2
ix � R

�
2
iy, respectively. By the

definition of cutting edge plane Ps, the unit normals of
Ps at points on cutting edge and on chisel edge as
Tedge,iXledge,i and Tchisel,i Xlchisel,i also can be obtained,
respectively. Furthermore, from geometrics it is known
that the angle d between plane Pa and plane Pb measured
in plane Pc is uniquely determined by the respective unit
normals la, lb, and lc as Cd � (la × lc).(lc × la) (see Fig.
8). By applying these conclusions and the Table 2 defi-
nitions, Table 3 presents the definitions of rake angle g,
clearance angle � and wedge angle m along the ith cut-

Fig. 8. The determination of angle between plane P̄a and plane P̄b
measured in plane P̄c.
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Table 3
Determination of various drill angles

Angle Is the angle between And Measured in plane

Cutting edge Rake angle gedge nedge on flute,i ledge,i Tedge,i

Clearance angle �edge Nedge on flank,i Tedge,i × ledge,i Tedge,i

Wedge angle medge nedge on flute,i Nedge on flank,i Tedge,i

Chisel edge Rake angle gchisel N
�

flank,i lchisel,i T
�

chisel,i

Clearance angle �chisel N
�

flank,i � 1 T
�

chisel,i × lchisel,i T
�

chisel,i

Wedge angle mchisel N
�

flank,i N
�

flank,i � 1 T
�

chisel,i

ting edge and the ith chisel edge in terms of the unit
normals of various planes.

Fig. 9 gives the rake angle gedge,i and clearance angle
�edge,i of points along the first cutting edge. The main
defect of a standard twist drill is the very large negative
rake angle on the part of the cutting edge close to the
drill core, which greatly increases the deformation of
metal chips and the cutting force during a drilling oper-
ation. The ranges of rake angle gchisel,i, clearance angle
�chisel,i and wedge angle mchisel,i along the first chisel edge
are respectively given by �64.04��gchisel,i��
62.93�, 25.08���chisel,i�26.92� and 126.01��mchisel,i�
128.96�. One feature of three-fluted drills is the large
negative rake angles on the chisel edges. This can be
easily simulated by using a pyramid sitting on the
drill’s core.

Fig. 9. The rake angle and clearance angle of points along the first
cutting edge.

8. Grinding

In order to verify the validity of the developed meth-
odology, a designed three-fluted drill possessing the
parameters a � 10�, l � 38�, R � 15, axo � 45.5, k1 �
0.286, k3 � 19.098, m � 0 was ground on a universal

tool-grinding machine (Fig. 10) by using the grinding
tool of Eq. (14). A photograph of its transverse sections
at riz � �10 mm is shown in Fig. 11, is used for com-
parison with Fig. 4.

In order to generate the ith flank surface, one can
obtain the relative configuration of the tool’s frame with
respect to drill’s frame from eqs. (1) and (18) as

Rflank,i � ��t’ i
tr �

[Rot(z,�bi)Trans(0,g,0)Trans(0,0,�w)

Rot(y,�
)Trans(0,0,l)][Rot(z,n)tq] � (35)

[Rot(z,�bi)Trans(0,g,0)Trans(0,0,�w)

Rot(y,�
)Trans(0,0,l)Rot(z,n)]tq

Eq. (35) indicates that one can produce the ith flank sur-
face if the universal tool-grinding machine can position
the workpiece at configuration Rot(z,�bi)
Trans(0,g,0)Trans(0,0,�w)Rot(y,�
)Trans(0,0,l) and
provide the an additional rotational motion Rot(z,n),
while the grinding tool possesses the generating curve
tq. In fact, the grinding tool doesn’ t have to revolve
360°, since the active cutting area of the ith flank is
smaller than 120°. Fig. 12 gives the front end view of
the major cutting edges.

9. Concluding remarks

A simple and complete multiflute drill model, which
has been previously unavailable in the literature, is
presented explicitly in this paper. This model contains a
flute model and a general flank model having z � f(x)
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Fig. 10. Grinding a three-fluted drill on a universal tool-grinding machine.

Fig. 11. The transverse section of the ground drill at riz=�10 mm.

as it generating curve. Therefore, the proposed model
can be reduced to conical, elliptical, hyperbolic and para-
bolic drill grinding models. The proposed model con-
tains three basic features. First, rotational axial-type cut-
ting tools and disk-type abrasive wheels are modeled by
revolution geometry, thus allowing the normals and tan-
gent vectors of flute and flank surfaces to be obtained
explicitly. Consequently, rake and clearance angles of
cutting and chisel edges can be investigated according
recommended ISO standards. Second, the mathematical
models of flute and flank surfaces are integrated, so that
cutting and chisel edges and their various characteristic
angles can be obtained by numerical calculation. Third,

Fig. 12. The front end view of the drill’s major cutting edges.

a simple way to determine the rake angles and wedge
angles and clearance angles is presented by using the
unit normals of the ISO-recommended reference planes,
allowing the major cutting edges and chisel edges and
their various cutting angles to be investigated according
to ISO recommendations. To verify the validity of the
method, the proposed approach was implemented in
software and used to design a three fluted drill. Then
the Denavit–Hartenberg notation was employed in the
determination of the desired NC data for a 6-axis tool-
grinding machine used in drill production. Better under-
standing of the multiflute drill can be achieved based on
this mathematical model. In the future, a drill having
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a desired rake angle distribution will be developed by
searching for the optimum generating curve.
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Appendix

Rot(z,n) � �
Cn �Sn 0 0

Sn Cn 0 0

0 0 1 0

0 0 0 1
� (A1)

Trans(ax,ay,az) � �
1 0 0 ax

0 1 0 ay

0 0 1 az

0 0 0 1
� (A2)

Rot(x,l) � �
1 0 0 0

0 Cl �Sl 0

0 Sl Cl 0

0 0 0 1
� (A3)

Rot(y,a) � �
Ca 0 Sa 0

0 1 0 0

�Sa 0 Ca 0

0 0 0 1
� (A4)

i�1A
�i � �

Cqi �SqiCai SqiSai aiSqi

Sqi CqiCai �CqiSai aiSqi

0 Sai Cai bi

0 0 0 1
� (A5)
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