

QSK23-G3

> Specification sheet

Our energy working for you.™

Description

The QSK23 is an in-line 6 cylinder engine with a 23 litre displacement. This Quantum series utilizes sophisticated electronics and premium engineering to provide outstanding performance levels, reliability and versatility for Standby, Prime and Continuous Power applications.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

The QSK23 uses the Cummins High Pressure Injection (HPI) PT full authority electronic fuel system. The HPI PT fuel system is managed by a G-Drive Governor Control System (GCS) controller, which is provided for off-engine mounting in the genset control panel. The Quantum Control has a specific fuel system board to interface with the HPI-PT fuel system and provides an Engine Protection package giving greater customer flexibility and cost effective alternatives in the control design and the benefits of Full Authority electronic control.

CTT (Cummins Turbo Technologies) HX82 turbo-charging utilizes exhaust energy with greater efficiency for improved emissions and fuel consumption.

Charge Air Cooling - QSK23 engine requires the use of an Airto-Air heat exchanger or Charge-Air-Cooler (CAC) to reduce intake manifold temperature and to meet the lower emissions requirements.

CoolPac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output			Typical Generator Set Output								
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	(PRP)	Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
768/1030	701/940	537/720	739/991	9/991 682/915 517/693		720	900	648	810	491	614

1800 rpm (60 Hz Ratings)

Gross Engine Output Net Engine Output				Typical Generator Set Output							
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	(PRP)	Base (COP)	
	kWm/BHP kWm/BHP			kWe	kVA	kWe	kVA	kWe	kVA		
895/1200	809/1085	652/875	857/1149	776/1041	621/833	800	1000	727	909	583	729

General Engine Data

Туре	4 cycle, Turbocharged
Bore mm	170
Stroke mm	170
Displacement Litre	23.1
Cylinder Block	Cast iron, 6 cylinder
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection Cummins HPI
Fuel Filter	Spin on fuel filters with water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	103
Flywheel Dimensions	SAE 0

Coolpac Performance Data

Cooling System Design	Air-air charge cooled				
Coolant Ratio	50% ethylene glycol; 50% water				
Total Coolant Capacity (I)	110				
Limiting Ambient Temp (°C)**	50.9 (50Hz)	55.0 (60Hz)			
Fan Power (kWm)	14.4 (50Hz)	24.2 (60Hz)			
Cooling System Air Flow (m ³ /s)**	13.5 (50Hz)	16.6 (60Hz)			
Air Cleaner Type	Dry replaceable element with restriction indicator				

^{** @ 13} mm H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source.

Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

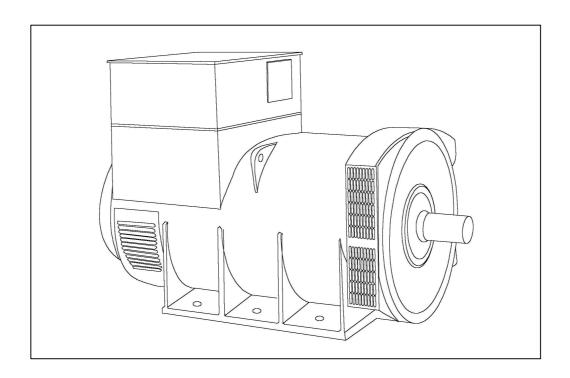
Length	Width	Height	Weight (dry)
mm	mm	mm	kg
2976	1656	1964	3245

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby Po	ower									
100	768	1030	178	46.9						
Prime Power										
100	701	940	161	42.5						
75	526	705	121	32.0						
50	351	470	85	22.4						
25	175	235	46	12.2						
Continuous	s Power									
100	100 537		125	33.1						

Fuel Consumption 1800 (60 Hz)

%	kWm	BHP	L/ph	US gal/ph						
Standby Po	ower									
100	895	1200	212	56.1						
Prime Power										
100	809	1085	189	49.8						
75	607	814	139	36.7						
50	405	543	97	25.7						
25	202	271	56	14.7						
Continuous	Continuous Power									
100	653	875	149	39.4						


Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255002 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811 North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

HCI634G - Technical Data Sheet

HCI634G SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

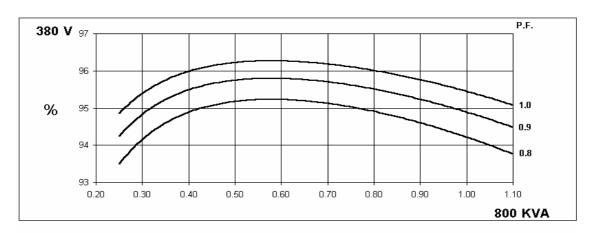
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

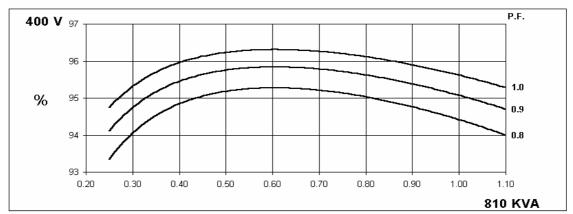
Front cover drawing typical of product range.

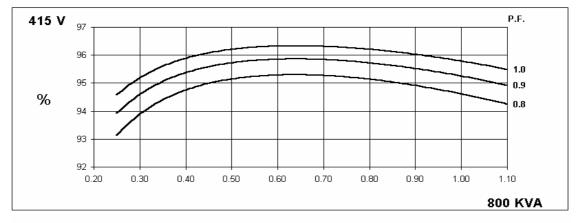
HCI634G

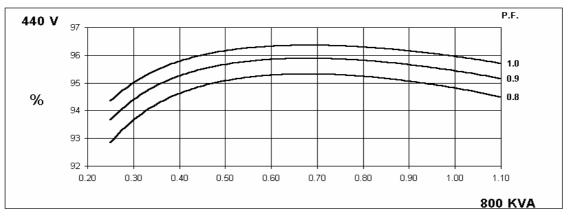
WINDING 312

CONTROL SYSTEM	SEPARATE	EPARATELY EXCITED BY P.M.G.					
A.V.R.	MX321						
VOLTAGE REGULATION	± 0.5 %	With 4% ENGINE GOVERNING					
SUSTAINED SHORT CIRCUIT	REFER TO	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)					

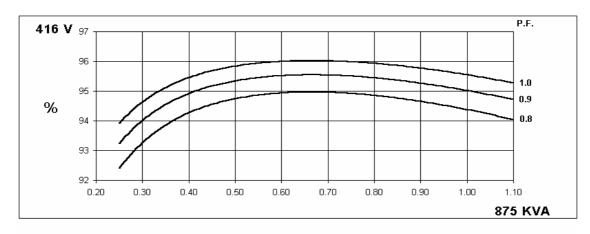

INSULATION SYSTEM										
				CLAS	SS H					
PROTECTION				IP2	23					
RATED POWER FACTOR				0.	8					
STATOR WINDING				DOUBLE LA	AYER LAP					
WINDING PITCH				TWO T						
WINDING LEADS				6						
STATOR WDG. RESISTANCE		0.0	003 Ohms PE	R PHASE AT	22°C STAR	CONNECTE	D			
ROTOR WDG. RESISTANCE			000 0111110 1 E	1.75 Ohms		0011112012				
EXCITER STATOR RESISTANCE			0.07	17 Ohms		000				
EXCITER ROTOR RESISTANCE			0.079	Ohms PER	PHASE AT 2	2°C				
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4,VDE 08				875G, VDE 0	875N. refer to	factory for o	thers		
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTIN				BALANCED	LINEAR LO	AD < 5.0%			
MAXIMUM OVERSPEED				2250 R	ev/Min					
BEARING DRIVE END				BALL. 62	24 (ISO)					
BEARING NON-DRIVE END	BALL. 6317 (ISO)									
		1 BEA	RING			2 BEA	RING			
WEIGHT COMP. GENERATOR		196	5 kg		1989 kg					
WEIGHT WOUND STATOR		934				934	kg			
WEIGHT WOUND ROTOR		814	kg			766	kg			
WR² INERTIA		18.348				17.8009				
SHIPPING WEIGHTS in a crate		202			2029kg					
PACKING CRATE SIZE		183 x 92 >			183 x 92 x 140(cm)					
			Hz		60 Hz					
TELEPHONE INTERFERENCE		THF	<2%		TIF<50					
COOLING AIR		1.614 m³/se				1.961 m³/se	c 4156 cfm			
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE DELTA	220	230	240	254	240	254	266	277		
kVA BASE RATING FOR REACTANCE	-									
VALUES	800	800	800	800	875	925	963	1000		
Xd DIR. AXIS SYNCHRONOUS	3.14	2.83	2.63	2.34	3.53	3.34	3.18	3.03		
X'd DIR. AXIS TRANSIENT	0.25	0.23	0.21	0.19	0.28	0.26	0.25	0.24		
X"d DIR. AXIS SUBTRANSIENT	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18		
Xq QUAD. AXIS REACTANCE	1.88	1.70	1.58	1.40	2.10	1.98	1.89	1.80		
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.19	0.18	0.16	0.24	0.23	0.22	0.21		
XL LEAKAGE REACTANCE	0.10	0.09	0.08	0.07	0.12	0.11	0.10	0.10		
X2 NEGATIVE SEQUENCE	0.22	0.20	0.19	0.17	0.24	0.23	0.22	0.21		
X ₀ ZERO SEQUENCE	0.03 0.03 0.03 0.02 0.03 0.03 0.03							0.03		
REACTANCES ARE SATURATE	D	V	ALUES ARE			ND VOLTAGE	INDICATED)		
T'd TRANSIENT TIME CONST.				0.1						
T''d SUB-TRANSTIME CONST.	0.025									
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.	2.35 0.04									
SHORT CIRCUIT RATIO				1/>						

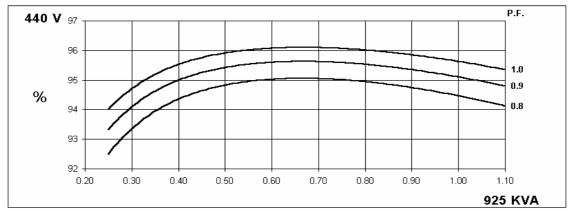

50 Hz

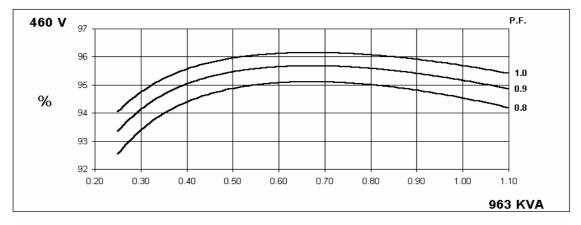

HCI634G Winding 312

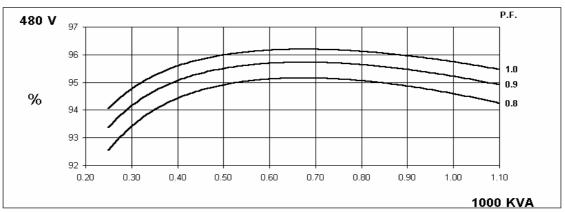


THREE PHASE EFFICIENCY CURVES

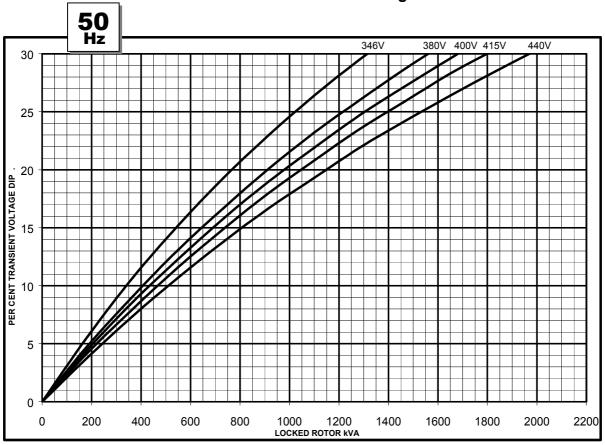





HCI634G Winding 312

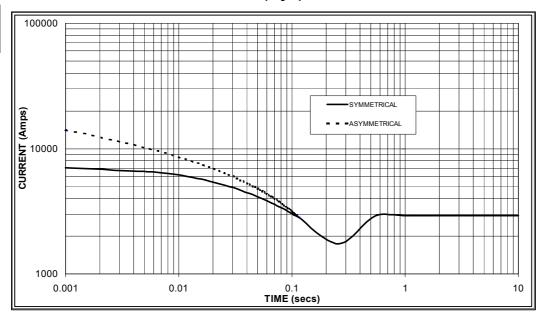

60 Hz

THREE PHASE EFFICIENCY CURVES

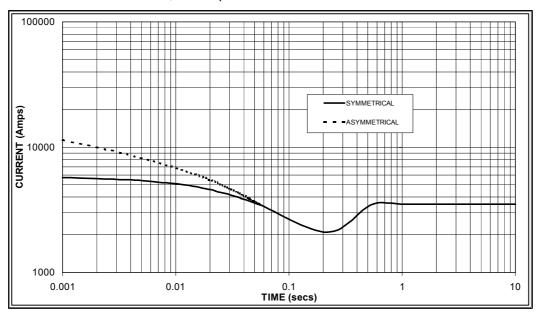


HCI634G Winding 312

Locked Rotor Motor Starting Curve



HCI634G


Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2,900 Amps

Sustained Short Circuit = 3,500 Amps

Note

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	x 1.00			
400v	X 1.07	440v	x 1.06			
415v	X 1.12	460v	x 1.12			
440v	X 1.18	480v	x 1.17			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

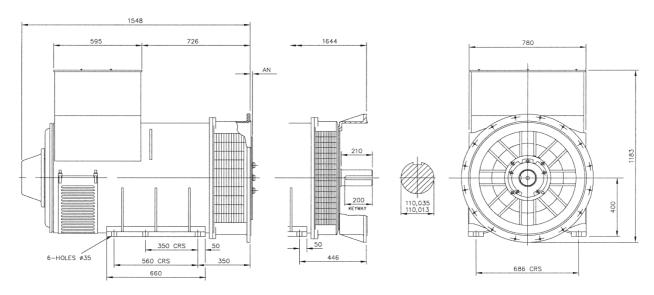
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732

HCI634G


Winding 312 0.8 Power Factor

RATINGS

Class - Temp Rise		Cont. F - 105/40°C				Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C				
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
00112	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	750	760	750	750	800	810	800	800	820	830	820	820	850	860	850	850
	kW	600	608	600	600	640	648	640	640	656	664	656	656	680	688	680	680
	Efficiency (%)	94.5	94.6	94.8	95.0	94.2	94.4	94.6	94.8	94.1	94.3	94.5	94.7	93.9	94.2	94.4	94.6
	kW Input	635	643	633	632	679	686	677	675	697	704	694	693	724	730	720	719

60 Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	813	844	888	913	875	925	963	1000	913	969	1008	1046	950	1000	1044	1088
	kW	650	675	710	730	700	740	770	800	730	775	806	837	760	800	835	870
Ef	fficiency (%)	94.6	94.7	94.8	94.8	94.4	94.5	94.5	94.6	94.2	94.3	94.4	94.4	94.1	94.2	94.3	94.3
kW Input		688	713	749	770	742	783	815	846	775	822	854	886	808	849	886	923

DIMENSIONS

SAE	14	18	21	24
AN	25.4	15.87	0	0