

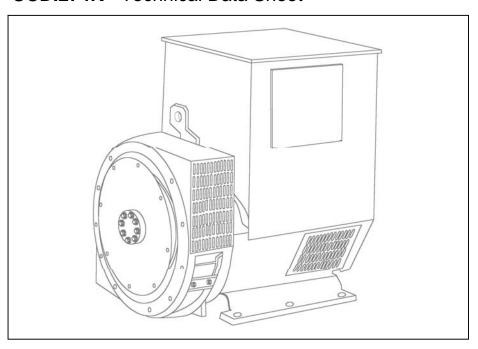
Stamford : *ָלָנְעוֹדַ*בּ*ּעָ*

موتور ديزل : Deutz

Sta	ındby	Prim	е
KVA	KW	KVA	KW
275	220	250	200

	موتور دیزل	
Manufacturer	Deutz	تولید کننده
Type	TCDL2013L06	تيپ
Number of cylinders	6	تعداد سیلندر ها
Cylinder arrangement	in-line	آرایش سیلندر ه <i>ا</i>
Cycle	4 stroke	چِرغه
Aspiration	Turbo charged	سیسته تنفس
Bore × Stroke, mm	105X120	قطر سیلندر × کورس پیستون
Displacement , Liters	4	ما به مایی
Speed Governor	Mechanical/Electronic	سرعت گاورنر
Cooling System	water-cooled	سیستم خنک کننده
Frequency	50Hz	فر <i>کانس</i>
Starter Motor	24V	استارتر موتور

	ژنراتور	
Manufacturer	Stamford	تولید کننده
Type	UCDI274K	تيپ
Exciter type	Brushless	نوع کانتر
Power factor	0.8	ضریب قدرت
Voltage	400-230	ولتاڙ
Frequency	50 Hz	فر <i>کا</i> نس
Speed, Rpm	1500	رعت
Insulation class	Н	کلاس عا <u>ی</u> ق
Protection class	IP23	کلاس مفاظتی
Excitation	Brushless	سیستم تمریک


Typical Generator Set Output												
Standb	oy (ESP)	Prime U Time	nlimited (PRP)	Cylinder No.	Engine Model							
kWe	kVA	kWe	kVA	4 L								
39.2	48	37.4	40	4 L	BF4M2011							
59	71	56.1	60	4 L	BF4M2011C							
102	116	97	104	4 L	BF4M1013EC							
106	124	101	108	6 L	BF4M1013FC							
153	165	146	157	6 L	BF6M1013EC							
183	205	166	184	6 L	BF6M1013FC-G2							
201	223	183	203	6 L	BF6M1013FC-G3							
242	285	226	255	6 L	TCDL2013L06							
418	477	380	432	6 L	BF6M1015C-G1							
459	527	402	457	8 V	BF8M1015C-G2							
176	585	448	508	8 V	BF8M1015CP-G3							

Typical Generator Set Output												
Standb	y (ESP)		power RP)	Cylinder No.	Engine Model							
kWe	kVA	kWe	kVA									
26	34.9	25	33.5	3 L	F3L912							
35	46.9	33	44.5	4 L	F4L912							
52	69.7	50	67.1	6 L	F6L912							

Typical Generator Set Output												
Standby (ESP)		Prime power (PRP)		Cylinder No.	Engine Model							
kWe	kVA	kWe kVA										
33	41.2	30	37.5	3 L	D226B-3D							
49.5	62	45	56.3	3 L	TD226B-3D							
66	82.5	60	75	4 L	TD226B-4D							
99	123.7	90	112.5	6 L	TD226B-6D							
132	165	120	150	6 L	TBD226B-6D							
145	181	132	165	6 L	TBD226B-6D5							
231	289	204	255	6 L	WD615.46D							
259	324	235	294	6 L	WD618.42D							

STAMFORD

UCDI274K - Technical Data Sheet

UCDI274K

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

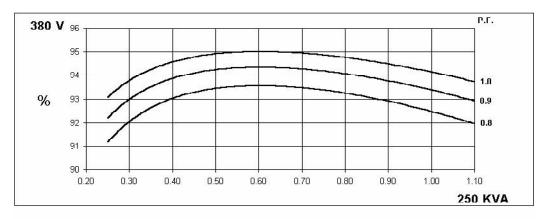
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

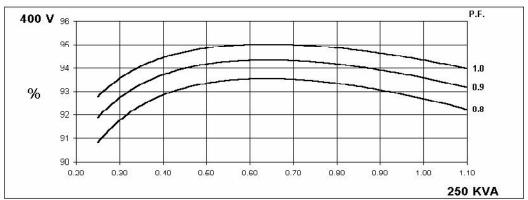
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

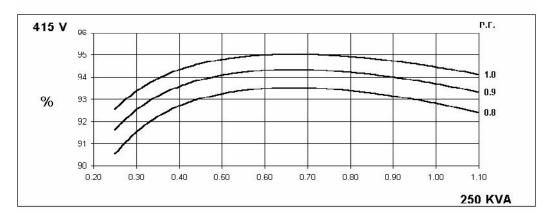
Front cover drawing typical of product range.

UCDI274K

		WIN	IDING 31	1							
CONTROL SYSTEM	SEPARATE	Y EXCITED	BY P.M.G.								
A.V.R.	MX321	MX341									
VOLTAGE REGULATION	± 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING									
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
CONTROL SYSTEM	SELF EXCIT	ED									
A.V.R.	SX460	AS440									
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVER	RNING						
SUSTAINED SHORT CIRCUIT	SERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT										
INSULATION SYSTEM				CLAS	SS H						
PROTECTION				IP	23						
RATED POWER FACTOR				0.	8						
STATOR WINDING			DO	UBLE LAYER	CONCENTE	RIC					
WINDING PITCH	TWO THIRDS										
WINDING LEADS				1:	2						
STATOR WDG. RESISTANCE	0.0126 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED										
ROTOR WDG. RESISTANCE				2.08 Ohm:	s at 22°C						
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C						
EXCITER ROTOR RESISTANCE			0.09	1 Ohms PER	PHASE AT 2	2°C					
R.F.I. SUPPRESSION	BS EN	N 61000-6-2	& BS EN 6100	00-6-4,VDE 0	875G, VDE 0	875N. refer to	factory for o	thers			
WAVEFORM DISTORTION		NO LOAD	< 1.5% NON-	DISTORTING	3 BALANCE	LINEAR LO	AD < 5.0%				
MAXIMUM OVERSPEED				2250 R	ev/Min						
BEARING NON-DRIVE END				BALL. 6310	-2RS (ISO)						
WEIGHT COMP. GENERATOR				727	kg						
WEIGHT WOUND STATOR	304 kg										
WEIGHT WOUND ROTOR				272.	6 kg						
WR ² INERTIA				2.3934	kgm ²						
SHIPPING WEIGHTS in a crate				740	kg						
PACKING CRATE SIZE				123 x 67 x	103 (cm)						
	50 Hz 60 Hz										
TELEPHONE INTERFERENCE			<2%			TIF					
COOLING AIR		0.58 m³/se	c 1230 cfm			0.69 m³/sec	1463 cfm				
VOLTAGE SERIES STAR (Y)	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR (Y)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138			
kVA BASE RATING FOR REACTANCE VALUES	250	250	250	N/A	291	299	312.5	312.5			

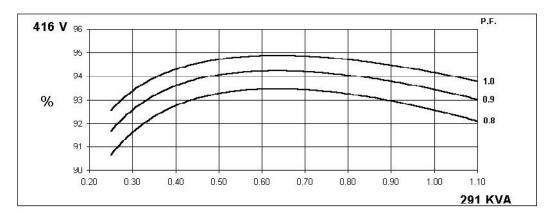

I ACINING CITATE GIZE	120 X 01 X 100 (CIII)												
		50	Hz		60 Hz								
TELEPHONE INTERFERENCE		THF	<2%		TIF<50								
COOLING AIR		0.58 m³/sec	c 1230 cfm			0.69 m ³ /sec 1463 cfm							
VOLTAGE SERIES STAR (Y)	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
VOLTAGE PARALLEL STAR (Y)	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138					
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138					
kVA BASE RATING FOR REACTANCE VALUES	250	250	250	N/A	291	299	312.5	312.5					
Xd DIR. AXIS SYNCHRONOUS	2.825	2.550	2.369	-	3.161	2.903	2.776	2.550					
X'd DIR. AXIS TRANSIENT	0.132	0.119	0.111	-	0.148	0.136	0.130	0.119					
X"d DIR. AXIS SUBTRANSIENT	0.086	0.078	0.072	-	0.097	0.089	0.085	0.078					
Xq QUAD. AXIS REACTANCE	1.263	1.140	1.059	-	1.413	1.298	1.241	1.140					
X"q QUAD. AXIS SUBTRANSIENT	0.152	0.137	0.127	-	0.170	0.156	0.149	0.137					
XL LEAKAGE REACTANCE	0.066	0.060	0.056	-	0.074	0.068	0.065	0.060					
X2 NEGATIVE SEQUENCE	0.120	0.108	0.100	-	0.134	0.123	0.118	0.108					
X ₀ ZERO SEQUENCE	0.022	0.020	0.019	-	0.025	0.023	0.022	0.020					
REACTANCES ARE SATURAT	ED	V	'ALUES ARE	PER UNIT A	T RATING AI	ND VOLTAGE	INDICATED)					

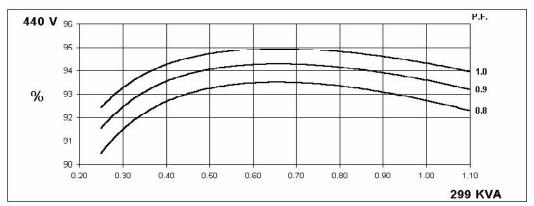


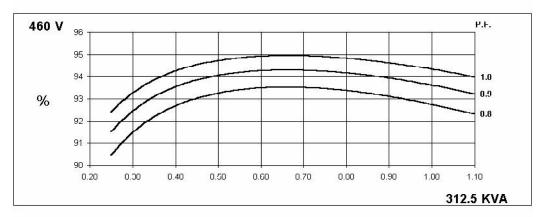

UCDI274K Winding 311

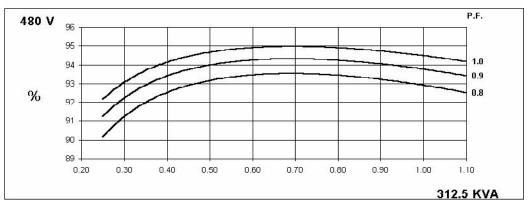
STAMFORD

THREE PHASE EFFICIENCY CURVES

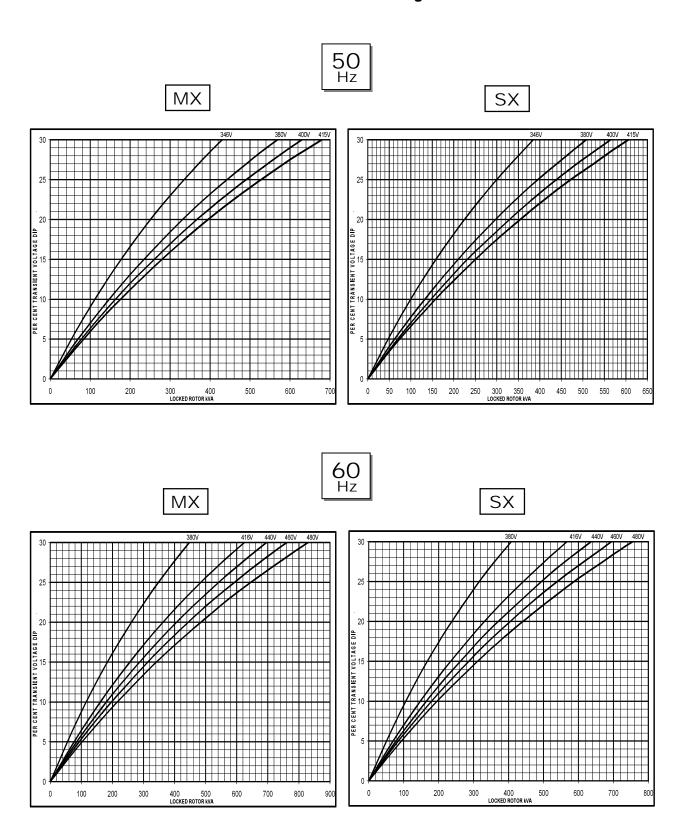


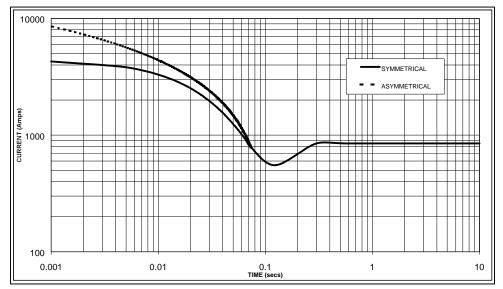

60 Hz


UCDI274K Winding 311

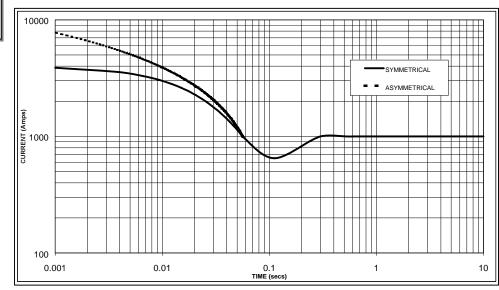

STAMFORD

THREE PHASE EFFICIENCY CURVES




UCDI274K Winding 311

Locked Rotor Motor Starting Curve


Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 850 Amps

Sustained Short Circuit = 1,000 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60	Hz		
Voltage	Factor	Voltage	Factor		
380v	X 1.00	416v	X 1.00		
400v	X 1.05	440v	X 1.07		
415v	X 1.10	460v	X 1.12		
		480v	X 1.16		

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

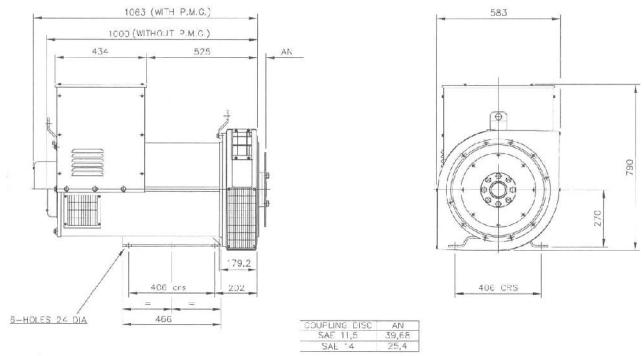
Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

STAMFORD


UCDI274K

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise Cont. F - 105/40°C			C	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°C			
,	5 0	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	ΓΙ∠	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
		kVA	229.0	229.0	229.0	N/A	250.0	250.0	250.0	N/A	265.0	265.0	265.0	N/A	275.0	275.0	275.0	N/A
		kW	183.2	183.2	183.2	N/A	200.0	200.0	200.0	N/A	212.0	212.0	212.0	N/A	220.0	220.0	220.0	N/A
		Efficiency (%)	92.8	93.0	93.1	N/A	92.5	92.7	92.8	N/A	92.2	92.4	92.6	N/A	92.0	92.2	92.4	N/A
L		kW Input	197.4	197.0	196.8	N/A	216.2	215.7	215.5	N/A	229.9	229.4	228.9	N/A	239.1	238.6	238.1	N/A
_																		
1	60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
		Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
		kVA	267.0	275.0	286.5	288.0	291.0	299.0	312.5	312.5	304.0	312.5	331.3	331.3	312.0	320.0	343.8	343.8
		kW	213.6	220.0	229.2	230.4	232.8	239.2	250.0	250.0	243.2	250.0	265.0	265.0	249.6	256.0	275.0	275.0
		Efficiency (%)	92.9	93.0	93.1	93.2	92.6	92.7	92.8	92.9	92.4	92.6	92.5	92.7	92.2	92.4	92.3	92.5
		kW Input	229.9	236.6	246.2	247.3	251.4	258.0	269.4	269.1	263.2	270.0	286.5	285.9	270.7	277.1	298.0	297.3

DIMENSIONS

STAMFORDBarnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100