

Volvo TAD941GE diesel engine

Leroy Somer LSA 47.2 VS2 alternator

Standard Generator Features

- AMF, Automatic mains failure unit
- Heavy duty type, 6 cylinder, water cooled engine
- ♦ 55°C tropical type radiator
- Starter motor
- Lead acid battery
- Charging alternator
- ♦ Battery charge redressor
- Heavy duty, brushless type alternator
- ♦ Base frame with anti-vibration units
- Industrial type silencers
- ♦ Flexible exhaust compensator
- Block water heater unit
- ♦ Control panel with digital-automatic main control module
- Fan, fan drive, charging alternator drive and all rotating parts covered
- Radiator matrix covered by metal mesh against the mechanical damages
- Fabricated and welded steel base frame
- Anti-vibration mountings
- Engine and alternator manufacturer test reports
- Factory load, performance and function tests

Optional Features

- Automatic load transfer panel
- Automatic syncronization and power sharing systems
- Soundproof canopy
- Container type enclosers
- Road trailer
- ♦ Job-site trailer
- Protection circuit breaker
- ♦ Air start
- ♦ Remote type radiator
- ♦ Base fuel tank
- External type fuel tank
- Automatic fuel transfer system
- Residential silencer

Model	Standby		Prime	
Wodei	kVA	kW	kVA	kW
CJ350VL	360	288	328	262

Volvo TAD941GE Engine

Standard Features

The TAD941GE is a powerful, reliable and economical Generating Set Diesel built on the dependable in-line six design.

Durability & low noise

Designed for easiest, fastest and most economical installation. Well-balanced to produce smooth and vibration-free operation with low noise level.

To maintain a controlled working temperature in cylinders and combustion chambers, the engine is equipped with piston cooling. The engine is also fitted with replaceable cylinder liners and valve seats/guides to ensure maximum durability and service life of the engine.

Low exhaust emission

The state of the art, high-tech injection and charging system with low internal losses contributes to excellent combustion and low fuel consumption.

The TAD941GE complies with EU stage2 and TA-luft exhaust emission regulations.

Easy service & maintenance

Easily accessible service and maintenance points contribute to the ease of service of the engine.

Engine and Block

- Optimized cast iron cylinder block with optimum distribution of forces without the block being unnessary heavy.
- Wet, replaceable cylinder liners
- Piston cooling for low thermal load on pistons and reduced ring temperature
- ♦Tapered connecting rods for reduce risk of piston cracking
- Crankshaft induction hardened bearing surfaces and fillets with seven main bearings for moderate load on main and high-end bearings
- ${\bf \diamond Nitrocarburized\ transmission\ gears\ for\ heavy\ duty\ operation }$
- ♦Keystone top compression rings for long service life
- Viscous type crankshaft vibration damper
- Over head camshaft and four valves per cylinder equipped with camshaft damper to reduce noise and vibrations.

Model	Standby kW		Prime kW	
Model	Gross	Net	Gross	Net
TAD941GE	323	310	294	281

Cooling System

Type Tropical, heavy duty type

Ambient temperature, °C 55
Engine+Radiator coolant cap., Liters 41
Jacket coolant flow, Liters / sec 5.5

- ♦Air to air intercooler
- Belt driven, maintenance-free coolant pump with high degree of efficiency
- Efficient cooling with accurate coolant control through a water distribution duct in the cylinder block. Reliable sleeve thermostat with minimum pressure drop
- ♦Coolant filter as standard

Fuel System

Type of injection system Direct injection
Fuel injector Electronic unit injector

Delivery/hour at 1500rev/min, Liters 108

Governor type Electronic / EMS2

- ◆Non-return fuel valve
- ◆Fuel prefilter with water separator and water-in-fuel indicator / alarm
- ♦Gear driven low-pressure fuel pump
- ◆Fuel pressure switch
- Self de-aerating system. When replacing filters all fuel stays in the engine.

Fuel Consumption

grams per kWh %100 Load 204 g/kWh %75 Load 200 g/kWh %50 Load 205 g/kWh %25 Load 226 g/kWh

Technical Specifications

Manufacturer VOLVO
Model TAD941GE

Type 4 cycle, water-cooled, diesel engine

Number of cylinders 6

Cylinder arrangement Vertical in-line
Displacement, Liters 9.36
Bore X Stroke, mm 120 X 138
Compression Ratio 17.4:1
Combustion System Direct injection

Aspiration Turbocharged, air-to-air charge cooled Rotation Anti-clockwise viewed on flywheel

Gross engine power, kWb 323
Fan Power, kWm 13
Exhaust gas temp.(after turbo), °C 539
Exhaust gas flow (after turbo),m³ / min 52.2
Mean piston speed, m / s 6.9

Lubricating System

Type Pressurized
Capacity, Liters 35
Lub oil pressure , kPa 350 - 600

♦Full flow oil cooler

Full flow disposable spin-on oil filter, for extra high filtration
 The lubricating oil level can be measured during operation
 Gear type lubricating oil pump, gear driven by the transmission

Electrical System

 Alternator
 Bosh, 24 Volt 80A

 Starter motor (DC)
 Melco, 24 Volt

 Starter motor power
 5.5 kW

Engine Management System 2 (EMS 2), an electronically controlled processing system which optimizes engine performance. It also includes advanced facilities for diagnostics and fault tracing

The instruments and controls connects to the engine via the CAN SAE J1939 interface and the Control Interface Unit (CIU). The CIU converts the digital CAN bus signal to an anolog signal, making it possible to connect a variety of instruments.

Sensors for oil pressure, oil temp, boost pressure, boost temp, coolant temp,fuel temp, water in fuel, fuel pressure and two speed sensors.

Leroy Somer LSA 47.2 VS2 Alternator

Standard Features

Top of the Range Electrical Performance

Class H insulation

Standard 12-wire re-connectable winding, 2/3 pitch

High efficiency and motor starting capacity

R 791 interference suppression conforming to standard EN 55011 group 1 $\,$

class B standard for Europen zone (CE marking)

Protection System Suited to the Environment

The LSA 47.2 is IP23

Reinforced Mechanical Structure Using Finite Element Modelling

Compact and rigid assembly to better withstand generator-set vibrations

Steel frame

Cast iron flanges and shields

Two-bearing and single bearing versions designed to be suitable for engines

on the market

Half-key balancing

Greased for life bearings (regreasable bearings optional)

Accessible Terminal Box Proportioned for Optional Equipment

Easy access to the voltage regulator and to the connections

Possible clusion of accessories for paralelling, protection and measurement

8-way terminal block for voltage reconnection

Compliant with International Standards

The LSA 47.2 alternator conforms to the main international standards and

IEC 60034, NEMA MG 1.22, ISO 8528, CSA, CSA/UL

It can be integrated into a **CE** marked generator set

The LSA 47.2 is designed, manufactured and marketed in an ISO 9001 $\,$

environment

Model	Standby		Prime	
Wodel	kVA	kW	kVA	kW
LSA 47.2 VS2	420	336	365	292

Technical Specifications

Manufacturer LEROY SOMER
Model LSA 47.2 VS2

Type 4-Poles, Rotating Field, Brushless

 Standby power at rated voltage, kVA
 420

 Efficiency, %
 93

 Power factor
 0.8

 Phase
 3

 Frequency, Hz
 50

 Speed, Rpm
 1500

 Voltage, V
 400

Excitation SHUNT(12 wire)
Stator windings 2/3 Pitch factor

Regulation AVR, Automatic Voltage Regulator

Voltage Regulator R 230
Voltage Regulation, % ± 0.5

Total HarmonicTGH / THC at no load<1.5% - on load<2%

 Waveform: NEMA = TIF
 < 50</td>

 Waveform: I.E.C = THF,
 < 2%</td>

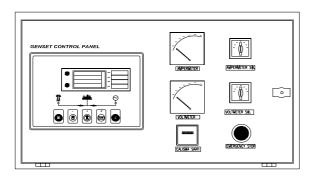
 Insultion class
 H

 Overspeed, Rpm
 2250

Construction Single bearing, direct coupled

Coupling Flexible
Amortisseur Windings Full
Connection WYE

Rotor Dynamic balanced


 $\begin{array}{ll} \mbox{Protection class} & \mbox{IP23} \\ \mbox{Air flow, m}^{3} \, / \, \mbox{min} & \mbox{0,9} \\ \end{array}$

Optional Equipment

- Filters on air inlet and air outlet (IP44)
- ♦ Windign protection for clean environmetrs with relative humidity greater than 95%
- Space heaters
- ♦Thermal protection for winding
- ◆Digital voltage regulator
- ◆PMG system

Control Panel

Standard Equipments

- ◆Deeapse 5220 digital automatic control module
- ♦Hourmeter
- Voltmeter
- ♦Voltmeter commutator
- ◆Ampermeter
- Ampermeter commutator
- ◆Emergency stop button

Deepsea 5220 Control Module

Description

- ♦The model 5220 is an Automatic Mains Failure Control module.
- •The modul is used to monitor a mains supply and automaticlly start a standby generator set.
- ∘The module also provides indication of operational status and fault conditions automaticly shutting down the genset and indicating failures by means of an LCD display, and appropriate flashing LED on the front panel.
- Selected timers and alarms can be altered by the user from the front panel.
- Alterations to the system are made using the 810 interface and a PC. This interface also provides real time diagnostic facilities

Specifications

- ♦240mm x 172mm dimensions
- ♦70mm x 40mm dimensions, 4 segment grafical LCD monitor
- ♦Developed 16-bit Microprocessor design
- ◆Easy comprehended display (Hid-Til-Lit SMD LED technology)
- ◆LED mimic diagram
- SMS messaging capability with suitable GSM Modem
- PC software is MS Windows based and allows the operator to control the module from a remote location (P810 Software Kit necessary)
- ◆Easy pushbutton controls
- System parameters can be adjusted manually from the front panel
- ⋄kVA,kW ve Cosφ measurements
- ◆Communication with MODEM

Pushbutton Controls

STOP / START AUTO, TEST, MANUAL LCD PAGE

Input Functions display on LCD

 Generator Volts
 Volts L1-N, L2-N, L3-N

 Generator Volts
 Volts L1-L2, L2-L3, L3-L1

 Generator Amps
 Amps L1, L2, L3

Generator Frequency Hz

 Mains Volts
 Volts L1-N, L2-N, L3-N

 Mains Volts
 Volts L1-L2, L2-L3, L3-L1

Mains Frequency Hz
Engine Speed RPM
Plant Battery Volts Volts
Engine Hours Run Hour

Optional Input Functions

Engine Oil pressure	kPa
Fuel level	%
Engine Temperature	°C

Alarm Channels

Under/over generator voltage

Over-current

Under/over generator frequency

Under/over speed

Charge fail

Emergency stop

Low oil pressure

High engine temperature

Fail to start

Low/high DC battery voltage

Reverse power

Generator phase rotation error

Generator short-circuit protection

Loss of speed sensing signal

Mains out of limits

Environmental Testing Standards

Electromagnetic Compatibility

BS EN 50081-2:1992 and EN 61000-6-4:2000 EMC, Emission Standards for the Industrial Environment

EN 61000-6-2:1999 EMC, Immunity Standards for the Industrial Environment

Vibration

BS EN 60068-2-6 Ten sweeps (up and back down) at 1 octave/minute in each of the three major axes.

5Hz to @ +/-7.5mm constant displacement.

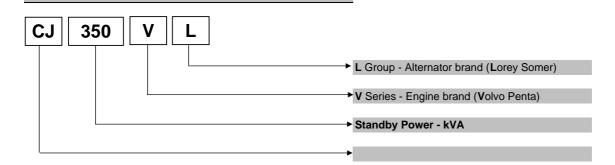
8Hz to 500Hz 2gn constant acceleration.

Temperature

Cold : BS EN 60068-2-1 to -30°C Hot : BS EN 60068-2-2 to 70°C

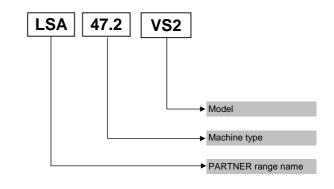
Humidity

BS EN 2011 part 2.1 93% RH @ 40° for 48 hours


Shock

BS EN 6068-2-27 Three half sine shocks in each of the three major axes 15gn amplitude.11mS duration.

Electrical Safety


BS EN 60950 Low Voltage Dirctive/Safety of information technology equipments, including electrical business equipment

Model Codes and General Information

Volvo Penta Diesel Engine T A D 9 4 1 G E Emission Controlled Generator drive Version Generation Displacement (liter) Air to air intercooler Turbocharged

Leroy Somer Alternator

Information

Power Ratings

Standby power rating is for the supply of emergency power at variable load for the duration of the non-avalaibality of the mains power supply. No overload capacity is available at this rating. A standby rated engine should be sized for an avarage load factor of 80% based on published standby rating for 500 operating hours per year. Standby ratings should never be applied except in true emergency power failure conditions.

Prime power rating is available for unlimited hours per year with a variable load of which the average engine load factor is 80% of the published power rating, incorporation of a 10% overload for 1 hour in every 12 hours of operation which permitted

Continuous power rating is available for continuous full load operation.No overload is permitted.

Acc. to ISO 3046/1, BS 5514, DIN6271

Electric Formulas

Values	Formula		
kWe	kWm X E		
kWe	(U x I x 1.73 x pf) / 1000	kVA x pf	
kVA	(U x I x 1.73) / 1000	kWe / pf	
I (Amp)	(kWe x 1000) / (U x 1.73 x pf)	(kVA x 1000) / (U x 1.73)	
Frequency	(Rpm x N°Pole) / (2 x 60)		
Rpm	(2 x 60 x Frequency) / N°Pole		

 kWm: Mechanical Power
 I : Current (A)

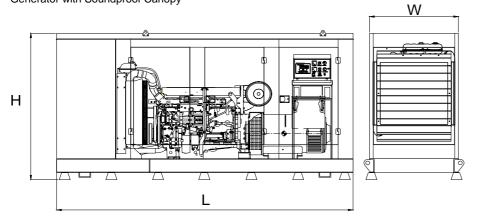
 kWe: Electrical Power
 U : Voltage (V)

 pf : Power factor
 kVA : Power

: Alternator efficiency Rpm: Revolutions per minute

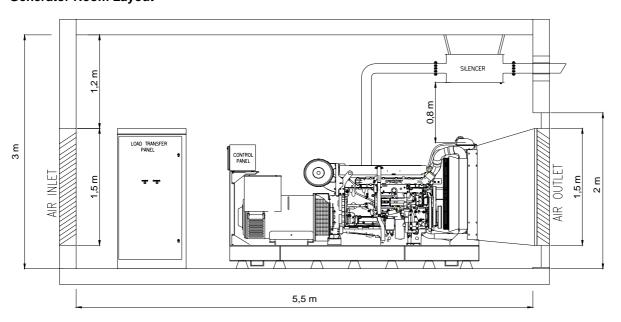
General Dimensions

Standard Generator


 Length, L
 3 m

 Heigth, H
 1,7 m

 Width, W
 1,1 m


 Weight, Total
 3150 kg

Generator with Soundproof Canopy

Length, L4,5 mHeigth, H2,5 mWidth, W1,4 mWeight, Total4350 kg

Generator Room Layout

