S3.8 G4 CoolPac

> Specification sheet

Our energy working for you.™

Description

The Cummins 'S Series' engine powered CoolPac sets offer the lowest cost of maintenance thereby proving to be the most economical power solution. With the robust design and integrated technologies, the 'S Series' CoolPac can command an unrivalled reputation for reliability and performance.

The Cummins 'S Series' engine powered CoolPac sets give you the advantage of optimising your valuable space. All elements of the CoolPac sets are designed from the start to work together to maximize efficiency, even at part loads, thus offering you the advantage of lowest operating costs.

The rugged and reliable Cummins 'S Series' CoolPac sets are unique, because all the major components – the engine and cooling system are manufactured by Cummins India. This integral approach means each element of a CoolPac set is designed to work in harmony from the start.

CE

This engine has been built to comply with CE certification.

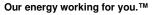
This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

Engine : Cummins 'S Series' CoolPac sets, powered by Cummins 'S Series ' engine, are rated at 1500 RPM and conform to ISO 8528 specifications. The engines are radiator cooled, four stroke and multi-cylinder, conforming to BS 55514/ISO 3046.

The scope of Supply includes :

- Battery Charging Alternator
- Bosch In-line fuel system with mechanical governor
- Dual spin-on fuel filter
- Lube oil filter
- Turbocharger
- Dry type Air Cleaner
- Coolant recovery bottle
- Fuel pump shut-off coil with safeties (LLOP, HWT)
- Flywheel and flywheel housing
- CÉ compliant guarding
- Oil drainage valve


Integrated Design - CoolPac products are supplied fitted with cooling package and medium duty air cleaner for a complete power package. Each component has been has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

150 9001

1500 rpm (50 Hz Ratings)

Gross Engine Output Net Engine Output					Typical Generator Set Output						
Standby	Prime	Base	Standby	Standby Prime Base			(ESP)	Prime	e (PRP)	Base (COP)	
kWm/BHP kWm/BHP				kWe	kVA	kWe	kVA	kWe	kVA		
43.4/58.2	38.7/51.9	27.1/36.3	41.4/55.5	36.7/49.1	25.1/33.6	35	44	32	40	22.4	28

www.cumminsgdrive.com

©2009 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc.

General Engine Data

Туре	In line, Radiator cooled
Bore mm	97
Stroke mm	128
Displacement Litre	3.8
Cylinder Block	Cast Iron, 4 Cylinder
Battery Charging Alternator	12V, 35 Amps
Starting Voltage	12V
Fuel System	Direct Injection
Fuel Filter	Spin on
Lube Oil Filter Type(s)	Spin on
Lube Oil Capacity (I)	11
Flywheel Dimensions	SAE3/10

CoolPac Performance Data

Cooling System Design	Jacket Water Cooled
Coolant Ratio	50:50
Coolant Capacity (I)	11
Limiting Ambient Temp. (degC)**	50
Fan Power (Kw)	2
Cooling System Air Flow (m ³ /s)**	0.84
Air Cleaner Type	Dry Type, Replaceable, medium duty
** @ 1/4" H ² 0	

** @ ¼" H²0

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
1135	740	980	450

Fuel Consumption 1500 (50 Hz)

%	kWm	BHP	L/ph	US gal/ph							
Standby Po	ower										
100	43.4	58.2	11.2	3							
Prime Power											
100	38.7	51.9	9.9	2.6							
75	28.9	38.9	7.6	2							
50	21.5	28.8	5.4	1.4							
25	9.7	13	3.5	0.9							
Continuous	Continuous Power										
100	27	36	7.2	1.9							

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700

Fax 52 444 870 6811

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298

Our energy working for you.™

www.cumminsgdrive.com

©2009 | Cummins G-Drive Engines | Specifications Subject to Change Without Notice | Cummins is a registered trademark of Cummins Inc.

PI144G - Technical Data Sheet

PI144G SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

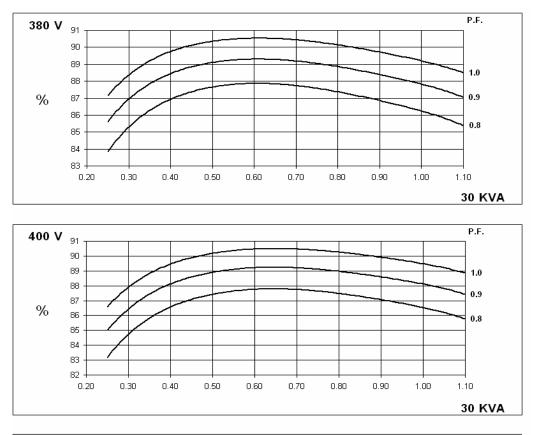
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

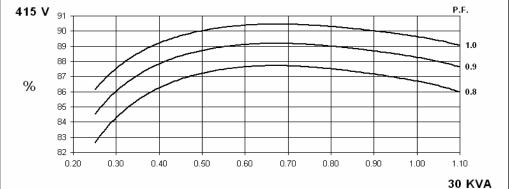
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

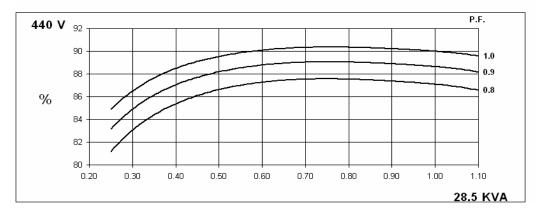
Front cover drawing typical of product range.

WINDING 311

CONTROL SYSTEM	STANDAR) AS480 AV	R (SELF EX	CITED)								
VOLTAGE REGULATION	± 1.0 %			02)								
SUSTAINED SHORT CIRCUIT		TED MACHI	NES DO NO	T SUSTAIN	A SHORT (CIRCUIT CU	RRENT					
CONTROL SYSTEM	AS480 AVR		IONAL EXC	TATION BC	OST SYST	-M (FBS)						
	AS480 AVR WITH OPTIONAL EXCITATION BOOST SYSTEM (EBS) REFER TO SHORT CIRCUIT DECREMENT CURVE (page 7)											
STATOR WINDING	DOUBLE LAYER CONCENTRIC											
WINDING PITCH	TWO THIRDS											
WINDING LEADS				1	2							
STATOR WDG. RESISTANCE		0.213 Oł	hms PER PH	ASE AT 22	°C SERIES	STAR CON	NECTED					
ROTOR WDG. RESISTANCE				0.857 Ohn	ns at 22°C							
EXCITER STATOR RESISTANCE				20.25 Ohn	ns at 22°C							
EXCITER ROTOR RESISTANCE			0.201		PHASE AT	22°C						
			0.20	12.9 Ohm	-	22 0						
EBS STATOR RESISTANCE												
R.F.I. SUPPRESSION							r to factory f					
WAVEFORM DISTORTION	1	NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	ED LINEAR I	_OAD < 5.0%	6				
MAXIMUM OVERSPEED				2250 F	Rev/Min							
BEARING DRIVE END	BALL. 6309 - 2RS. (ISO)											
BEARING NON-DRIVE END	BALL. 6306 - 2RS. (ISO)											
	1 BEARING 2 BEARING											
WEIGHT COMP. GENERATOR		160) kg		163 kg							
WEIGHT WOUND STATOR		68	kg		68 kg							
WEIGHT WOUND ROTOR		57.39 kg				58.39 kg						
WR ² INERTIA		0.219	6 kgm ²		0.2197 kgm ²							
SHIPPING WEIGHTS in a crate			3 kg		187 kg							
PACKING CRATE SIZE			x 67 (cm)		85 x 51 x 67 (cm)							
			Hz		60 Hz							
TELEPHONE INTERFERENCE			<2%		TIF<50							
			ec 191cfm		0.108 m³/sec 229 cfm							
	200/202			440/054								
	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE VALUES	30	30	30	28.5	33	35.3	36.4	37.5				
Xd DIR. AXIS SYNCHRONOUS	1.74	1.57	1.46	1.23	2.06	1.97	1.86	1.76				
X'd DIR. AXIS TRANSIENT	0.16	0.14	0.13	0.11	0.19	0.18	0.17	0.16				
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.14	0.13	0.13	0.12				
Xq QUAD. AXIS REACTANCE	0.83	0.75	0.70	0.59	0.99	0.95	0.89	0.85				
X"q QUAD. AXIS SUBTRANSIENT	0.18	0.16	0.15	0.13	0.21	0.20	0.19	0.18				
XL LEAKAGE REACTANCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07				
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	0.11	0.18	0.17	0.16	0.15				
X0ZERO SEQUENCE	0.07	0.06	0.06	0.05	0.08	0.08	0.07	0.07				
REACTANCES ARE SATURAT	ED	VA	LUES ARE I			ND VOLTA	GE INDICAT	ED				
T'd TRANSIENT TIME CONST. 0.024 s												
T"d SUB-TRANSTIME CONST.					06 s							
T'do O.C. FIELD TIME CONST.					i5 s							
Ta ARMATURE TIME CONST.					07 s							
SHORT CIRCUIT RATIO	1/Xd											

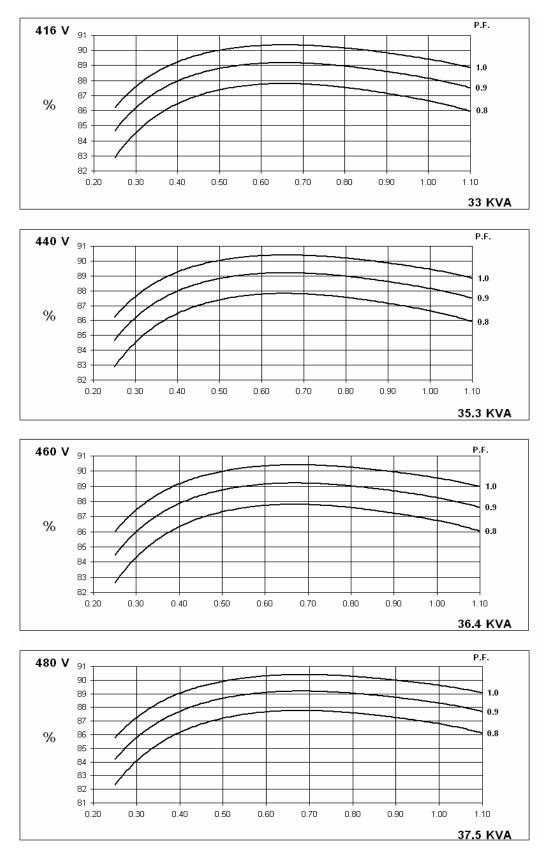

STAMFORD



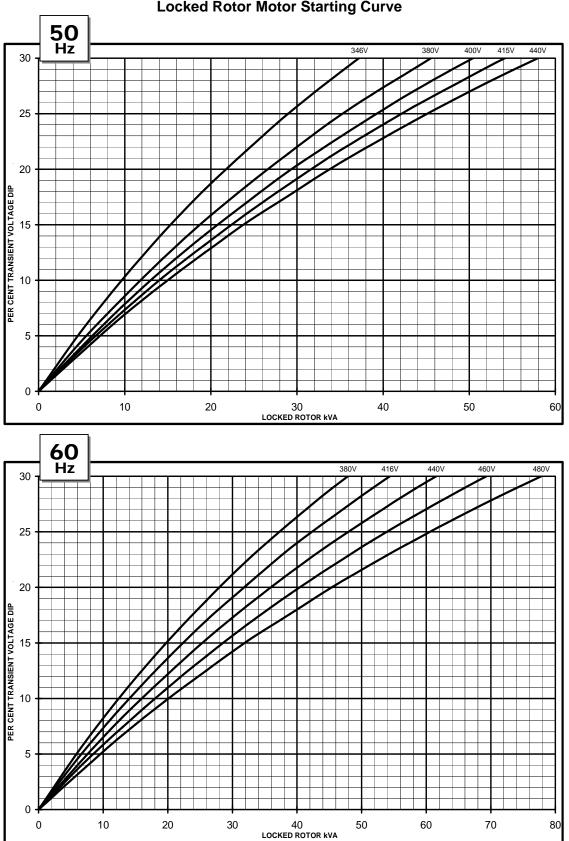

PI144G

Winding 311

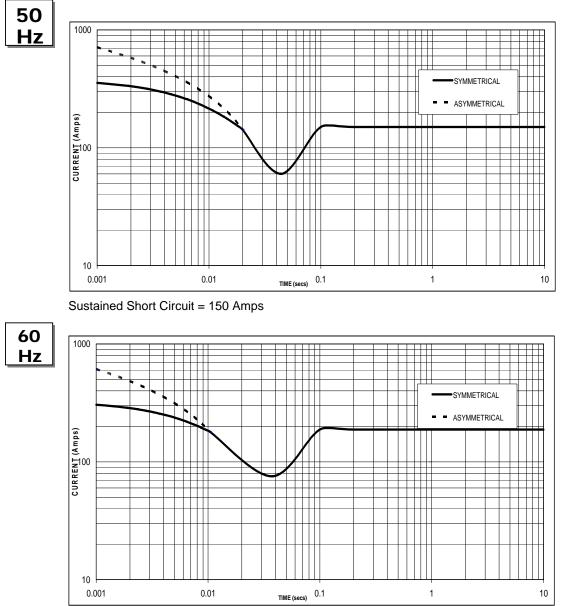
THREE PHASE EFFICIENCY CURVES


STAMFORD

PI144G


Winding 311

THREE PHASE EFFICIENCY CURVES



Winding 311

WITH EBS FITTED Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 188 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Hz	60Hz				
Factor	Voltage	Factor			
X 1.00	416v	X 1.00			
X 1.05	440v	X 1.06			
X 1.09	460v	X 1.10			
440v X 1.16		X 1.15			
	Factor X 1.00 X 1.05 X 1.09	Factor Voltage X 1.00 416v X 1.05 440v X 1.09 460v			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

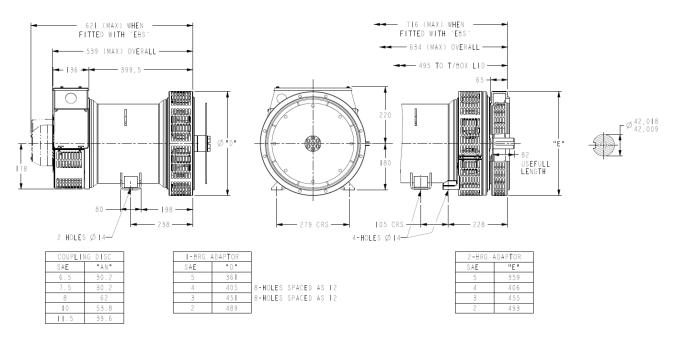
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732



Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	С	ont. F -	105/40°	°C	C	ont. H -	125/40	°C	St	andby -	150/40	°C	St	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	27.5	27.5	27.5	26.1	30.0	30.0	30.0	28.5	32.3	32.3	32.3	30.6	33.0	33.0	33.0	31.4
	kW	22.0	22.0	22.0	20.9	24.0	24.0	24.0	22.8	25.8	25.8	25.8	24.5	26.4	26.4	26.4	25.1
	Efficiency (%)	86.8	87.0	87.1	87.4	86.2	86.5	86.7	87.1	85.7	86.0	86.2	86.8	85.5	85.8	86.1	86.6
	kW Input	25.3	25.3	25.3	23.9	27.8	27.7	27.7	26.2	30.1	30.0	29.9	28.2	30.9	30.8	30.7	29.0
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	30.3	32.3	33.3	34.4	33.0	35.3	36.4	37.5	35.5	37.9	39.1	40.3	36.3	38.8	40.0	41.3
	kW	24.2	25.8	26.6	27.5	26.4	28.2	29.1	30.0	28.4	30.3	31.3	32.2	29.0	31.0	32.0	33.0
	Efficiency (%)	87.1	87.1	87.2	87.2	86.7	86.6	86.7	86.8	86.2	86.2	86.3	86.3	86.0	86.0	86.1	86.2
	kW Input	27.8	29.6	30.5	31.5	30.4	32.6	33.6	34.6	32.9	35.2	36.3	37.3	33.7	36.0	37.2	38.3

DIMENSIONS

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100